Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We report the discovery of a complete Einstein ring around the elliptical galaxy NGC 6505, atz = 0.042. This is the first strong gravitational lens discovered inEuclidand the first in an NGC object from any survey. The combination of the low redshift of the lens galaxy, the brightness of the source galaxy (IE = 18.1 lensed,IE = 21.3 unlensed), and the completeness of the ring make this an exceptionally rare strong lens, unidentified until its observation byEuclid. We present deep imaging data of the lens from theEuclidVisible Camera (VIS) and Near-Infrared Spectrometer and Photometer (NISP) instruments, as well as resolved spectroscopy from theKeckCosmic Web Imager (KCWI). TheEuclidimaging in particular presents one of the highest signal-to-noise ratio optical/near-infrared observations of a strong gravitational lens to date. From the KCWI data we measure a source redshift ofz = 0.406. Using data from the Dark Energy Spectroscopic Instrument (DESI) we measure a velocity dispersion for the lens galaxy ofσ⋆ = 303 ± 15 km s−1. We model the lens galaxy light in detail, revealing angular structure that varies inside the Einstein ring. After subtracting this light model from the VIS observation, we model the strongly lensed images, finding an Einstein radius of 2.″5, corresponding to 2.1 kpc at the redshift of the lens. This is small compared to the effective radius of the galaxy,Reff ∼ 12.″3. Combining the strong lensing measurements with analysis of the spectroscopic data we estimate a dark matter fraction inside the Einstein radius offDM = (11.1−3.5+5.4)% and a stellar initial mass-function (IMF) mismatch parameter ofαIMF = 1.26−0.08+0.05, indicating a heavier-than-Chabrier IMF in the centre of the galaxy.more » « less
-
A<sc>bstract</sc> An angular analysis ofB0→ K*0e+e−decays is presented using proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 7, 8 and 13 TeV, corresponding to an integrated luminosity of 9 fb−1. The analysis is performed in the region of the dilepton invariant mass squared of 1.1–6.0 GeV2/c4. In addition, a test of lepton flavour universality is performed by comparing the obtained angular observables with those measured inB0→ K*0μ+μ−decays. In general, the angular observables are found to be consistent with the Standard Model expectations as well as with global analyses of otherb → sℓ+ℓ−processes, whereℓis either a muon or an electron. No sign of lepton-flavour-violating effects is observed.more » « less
-
A<sc>bstract</sc> A search for the decay$$ {B}_c^{+} $$ → χc1(3872)π+is reported using proton-proton collision data collected with the LHCb detector between 2011 and 2018 at centre-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of 9 fb−1. No significant signal is observed. Using the decay$$ {B}_c^{+} $$ →ψ(2S)π+as a normalisation channel, an upper limit for the ratio of branching fractions$$ {\mathcal{R}}_{\psi (2S)}^{\chi_{c1}(3872)}=\frac{{\mathcal{B}}_{B_c^{+}\to {\chi}_{c1}(3872){\pi}^{+}}}{{\mathcal{B}}_{B_c^{+}\to \psi (2S){\pi}^{+}}}\times \frac{{\mathcal{B}}_{\chi_{c1}(3872)\to J/\psi {\pi}^{+}{\pi}^{-}}}{{\mathcal{B}}_{\psi (2S)\to J/\psi {\pi}^{+}{\pi}^{-}}}<0.05(0.06), $$ is set at the 90 (95)% confidence level.more » « less
-
The branching fraction of the decay , relative to the topologically similar decay , is measured using proton-proton collision data collected by the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of . The ratio is found to be , where the first uncertainty is statistical and the second systematic. Using the world-average branching fraction for , the branching fraction for the decay is found to be , where the first uncertainty is statistical, the second systematic, and the third is due to the branching fraction of the normalization channel. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « less
-
The first measurement of the asymmetry of the decay rate ( ) and the average ( ) and asymmetry ( ) of the forward-backward asymmetry in the muon system of decays is reported. The measurement is performed using a data sample of proton-proton collisions, recorded by the LHCb experiment from 2016 to 2018 at a center-of-mass energy of 13 TeV, which corresponds to an integrated luminosity of . The asymmetries are measured in two regions of dimuon mass near the -meson mass peak. The dimuon-mass integrated results are , , , where the first uncertainty is statistical and the second systematic. The results are consistent with the conservation of symmetry and the Standard Model expectations. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « less
-
A search for violation in and decays is presented using the full Run 1 and Run 2 data samples of collisions collected with the LHCb detector, corresponding to an integrated luminosity of at center-of-mass energies of 7, 8, and 13 TeV. For the Run 2 data sample, the -violating asymmetries are measured to be and , where the first uncertainty is statistical and the second is systematic. Following significant improvements in the evaluation of systematic uncertainties compared to the previous LHCb measurement, the Run 1 dataset is reanalyzed to update the corresponding results. When combining the Run 2 and updated Run 1 measurements, the final results are found to be and , constituting the most precise measurements of these asymmetries to date. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « less
-
A<sc>bstract</sc> TheΥ(2S) andΥ(3S) production cross-sections are measured relative to that of theΥ(1S) meson, as a function of charged-particle multiplicity in proton-proton collisions at a centre-of-mass energy of 13 TeV. The measurement uses data collected by the LHCb experiment in 2018 corresponding to an integrated luminosity of 2 fb−1. Both theΥ(2S)-to-Υ(1S) andΥ(3S)-to-Υ(1S) cross-section ratios are found to decrease significantly as a function of event multiplicity, with theΥ(3S)-to-Υ(1S) ratio showing a steeper decline towards high multiplicity. This hierarchy is qualitatively consistent with the comover model predictions, indicating that final-state interactions play an important role in bottomonia production in high-multiplicity events.more » « less
-
The first test of lepton flavor universality between muons and electrons using ( , ) decays is presented. The measurement is performed with data from proton-proton collisions collected by the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of . The ratio of branching fractions between and decays is measured in the dilepton invariant-mass-squared range and is found to be , in agreement with the standard model prediction. The first observation of the decay is also reported. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « less
An official website of the United States government
